贵州升学网
贵州升学网 > 贵州中考 > 贵州中考报名

贵阳今年中考难吗

日期:04-04  702人关注

每年参加中考得到同学都会问“今年中考难不难”?中考考试还没有来,更本不知道难还是不难,而且每年各科的考试题目都不一样,不过都是围绕着初中三年的知识点出考题,所以同学们上课时要做好课堂笔记,多复习知识点,特别是数学和化学公式,只要记住了公式,那么做题就不是问题。想要交一份满意的中考答卷,得全靠自己努力,下面是小编分享的部分2018年数学模拟题,仅供参考。

2018年贵阳中考数学模拟试题

一、填空题

1.已知:a﹣2的值是非负数,则a的取值范围为.

2.如图,王老师在上多边形外角和这节课时,做了一个活动,让小明在操场上从A点出发前进1m,向右转30°,再前进1m,又向右转30°,…,这样一直走下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.小明一共走了m,这个多边形的内角和是度.

3.如图,等边三角形OBC的边长为10,点P沿O→B→C→O的方向运动,⊙P的半径为.⊙P运动一圈与△OBC的边相切次,每次相切时,点P到等边三角形顶点最近距离是.

4.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0(填“>”或“<”或“=”) 5.如图,在反比例函数y=(x>0)的图象上有点A1,A2,A3,…,An﹣1,An,这些点的横坐标分别是1,2,3,…,n﹣1,n时,点A2的坐标是;过点A1作x轴的垂线,垂足为B1,再过点A2作A2P1⊥A1B1于点P1,以点P1、A1、A2为顶点的△P1A1A2的面积记为S1,按照以上方法继续作图,可以得到△P2A2A3,…,△Pn﹣1An﹣1An,其面积分别记为S2,…,Sn﹣1,则S1+S2+…+Sn=.

二、解答题

6.先化简,后求值:,再任选一个你喜欢的数x代入求值.

7.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:

(1)共抽取了多少个学生进行调查?

(2)将图甲中的折线统计图补充完整.

(3)求出图乙中B等级所占圆心角的度数.

8.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.

(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;

(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)

9.某商场为了吸引顾客,设置了两种促销方式.一种方式是:让顾客通过转转盘获得购物券.规定顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准100元、50元、20元的相应区域,那么顾客就可以分别获得100元、50元、20元购物券,凭购物券可以在该商场继续购物;如果指针对准其它区域,那么就不能获得购物券.另一种方式是:不转转盘,顾客每购买100元的商品,可直接获得10元购物券.据统计,一天中共有1000人次选择了转转盘的方式,其中指针落在100元、50元、20元的次数分别为50次、100次、200次.

(1)指针落在不获奖区域的概率约是多少?

(2)通过计算说明选择哪种方式更合算?

10.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.

11.某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:

①甲队单独完成此项工程刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;

如果工程不能按预定时间完工,公司每天将损失3000元,你觉得哪一种施工方案最节省工程款,并说明理由.

12.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

13.如图,相距40km的两个城镇A,B之间有一个圆形湖泊,它的圆心落在AB连线的中点O,半径为10km.现要修建一条连接两城镇的公路.经过论证,认为AA′++BB′为最短路线(其中AA′,BB′都与⊙O相切).

(1)你能计算出这段公路的长度吗?(结果精确到0.1km)

(2)阴影部分的面积是多少?(结果精确到1km2)

14.如图①,将一张直角△ABC纸片折叠,使点A与点C重合,这时DE为折痕,△ECB为等腰三角形;继续将纸片沿△ECB的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的矩形为“叠加矩形”.

(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕.

(2)如图③在正方形网格中,以给定的BC为一边,画出一个斜三角形△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形.

(3)若一个三角形所折成的“叠加矩形”为正方形,那么必须满足的条件是什么?

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是什么?

15.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程.

(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.

(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D的坐标和△DBC的面积;若不存在,请说明理由.

小编总结

中考来临的前期,校园里充满了紧张的氛围。而在这个阶段里,是考生们复习的黄金时期,各科的教学都基本结束了,老师们也将进行一、二论总复习。把繁杂的知识系统化、条理化,找到每科中的一条宏观的线索,提纲挈领,全面复习。巧用错题集、往年中考和模拟真题。查找知识漏洞,进行专项突破。

升学网>中考>中考报名>贵州

展开全文 ∨
初中生入口 网上报名 小学生入口
 
择校咨询
 
 
招生信息
 
同区域学校
 
贵州高中招生贵州中考报名贵州中考成绩查询贵州中考招生分数贵州中考录取查询贵州中考志愿填报贵州中考报考指南